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Symmetry properties of heat conduction in inhomogeneous materials
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We address the analysis of the energy flow properties of lattice Hamiltonian systems: precisely, we inves-
tigate, by using analytical methods, a schematically anharmonic and inhomogeneous model: namely, the chain
of oscillators with self-consistent reservoirs. We obtain a symmetric thermal conductivity even for a system
with inhomogeneous interparticle interactions or with graded particle masses. Our results show that inhomo-
geneity in a system obeying Fourier’s law does not guarantee an asymmetric heat flow, and they pose the
question if only anharmonicity and inhomogeneity are sufficient to assure a significative thermal rectification
in a system, as suggested in the recent literature for graded structures.
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I. INTRODUCTION

The derivation of macroscopic phenomenological laws of
thermodynamic transport from the underlying microscopic
Hamiltonian systems is still a challenge to theoretical phys-
ics. In particular, we still ignore the precise conditions in a
microscopic dynamical system of interacting particles that
lead to Fourier’s law of heat conduction, F=—«V T, which
relates the heat flow F to the temperature gradient VT. For a
long time many works have been devoted to this and other
related problems [1], almost all of them by means of com-
puter simulations. Contradictions exist: for example, the au-
thors of Ref. [2] affirm that anharmonicity (soft or hard) of
the on-site potential is enough to guarantee Fourier’s law, but
in Ref. [3] it is presented a counterexample. The difficulty to
arrive at precise conclusions from numerical studies in these
problems with convergent and divergent thermal conductiv-
ity makes evident the importance of more accurate treat-
ments (more comments are presented, e.g., in Ref. [4]). Ana-
lytical investigations have appeared, always considering
approximations or simplified models due to the huge techni-
cal difficulty associated with the nonlinear dynamics—to
quote some well-known mathematical physicists [5,6]: a
complete analytical treatment of these nonlinear systems “is
not even on the horizon,” or, according to the authors of
Refs. [7,8], “a rigorous treatment of a nonlinear system, even
the proof of existence of the conductivity coefficient, is out
of reach of current mathematical techniques.” As an example
of (recurrently revisited) simplified model, we recall the har-
monic crystal with self-consistent stochastic reservoirs,
which has been recently analytically investigated (the inner
reservoirs are a simplified representation of the anharmonic
part of the interaction): the classical and quantum versions
are analyzed, respectively, in [9,10]. In Ref. [11], to mention
another recent work still considering such model, the phe-
nomenon of crossover from ballistic to diffusive thermal
transport (as the system size is changed) is treated. Other
approximative analytical schemes to study the energy flux
are considered, e.g., in [5,12].
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On the other hand, besides the interest in the origin of the
physical mechanism of energy transport, another very impor-
tant question has been attracted much attention: applications
based on the possibility to control the heat flow. With the
advent of nanotechnology, the possibility of constructing
thermal (nano)devices such as rectifiers or diodes [13] and
thermal transistors [14] becomes of great interest. As well
known, a thermal diode is a device in which the heat flow
becomes different if the device is inverted between two heat
baths. We recall some works which propose to build, again
via computer simulations, a thermal diode. In [13], a thermal
diode is constructed (for the first time) by coupling three
nonlinear chains with different Morse on-site potential lat-
tices; in [15], a higher-gain diode is proposed, whose struc-
ture consists of two coupling Frenkel-Kontorova lattices con-
nected by a harmonic string. However, for these two-
segment models, in Ref. [16], the authors claim that the
asymmetry in the heat conduction critically depends on the
properties of the interface and system size, and so, they con-
clude that it will be a difficulty task to construct a thermal
rectifier in practice. But in a recent work [17], Chang et al.
experimentally build a nanoscale thermal rectifier using a
different procedure: they take carbon and boron nitride nano-
tubes, initially with symmetric axial thermal conductance,
and then they mass-load externally and inhomogeneously the
nanotubes with heavy molecules. The resulting graded mass
systems yield asymmetric axial thermal conductance, with
greater heat flow in the direction of decreasing mass density.
About graded materials—i.e., inhomogeneous materials
whose composition and/or structure change gradually in
space—it is worth recalling that they are abundant in nature,
can also be manufactured, and have recently attracted great
interest in many areas (due to their physical properties): ma-
terial sciences, engineering, optics, etc. [18]. We also recall
that in a recent paper [19], the authors investigate an anhar-
monic chain (precisely, a system with a quite specific inter-
action, the Fermi-Pasta-Ulam 8 potential) and, by means of
computer simulations, they conclude that the heat flow is
asymmetric in lattices with a mass gradient (and fixed
boundary conditions). Moreover, they discuss possible appli-
cations in constructing thermal rectifiers and thermal transis-
tors by using graded materials. Again, in [20], Casati claims
that it is possible to make a thermal rectifier by coating a
nanotube with a molecular layer that is thicker on one end
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than the other. In short, these last results may suggest us that
now we have a precise mechanism to build thermal rectifiers;
that is, by taking any anharmonic system and changing its
structure gradually in space (e.g., increasing the particle
masses), we obtain materials with asymmetric heat proper-
ties.

In this article, considering the context of possible appli-
cations of the heat flow control, we study the thermal con-
ductivity of a inhomogeneous chain. In this scenario of, say,
more accurate study, we perform an analytical (and rigorous)
investigation of the harmonic crystal with self-consistent res-
ervoirs and arbitrary structures, including the graded one.
This model was proposed by Bolsterli, Rich, and Visscher
awhile ago [21] (there with homogeneous structures), and its
quantum version was presented in [22]. As already said, it
has been revisited many times (e.g., in [9-11]); it is a sche-
matic (and analytically treatable) anharmonic system.
Roughly, it consists of a chain of oscillators with harmonic
nearest-neighbor interparticle interactions and on-site poten-
tials, and stochastic reservoirs coupled to each site. From a
physical point of view, the inner reservoirs are interpreted as
a schematic representation of anharmonic on-site potentials:
the self-consistent condition means that the inner reservoirs
exchange no energy with the system in the steady state; i.e.,
the inner reservoirs represent only a mechanism of phonon
scattering (given by the on-site anharmonic interactions in
more complicated models). This model, as proved in [9],
obeys the Fourier’s law, in opposition to the pure harmonic
systems [23]. Moreover, it is rich enough to describe other
interesting phenomena: e.g., its quantum version presents a
crossover from ballistic to diffusive thermal transport [11], as
reminded above.

We derive an expression for the thermal conductivity of
the system by means of a perturbative computation. We em-
phasize that the analysis is rigorous: the perturbative series is
convergent [24]. Our results show that inhomogeneity in a
system obeying Fourier’s law does not guarantee an asym-
metric heat flow, and they pose the question of what ingre-
dients in an inhomogeneous material are sufficient to lead to
a significant thermal rectification.

The rest of the paper is organized as follows. In Sec. II we
present the model in detail and introduce our approach de-
veloped to study the heat flow. In Sec. III we describe the
perturbative computation up to second order in the coupling
interaction, and we argue about the structure of the remain-
ing terms. We also present the expression for the thermal
conductivity. Section IV is devoted to final remarks.

II. MODEL AND FORMALISM

Let us introduce the mathematical expressions describing
the model. We take a chain of oscillators (we will be re-
stricted to the one-dimensional case, but the analysis follows
for any d) with Hamiltonian

2
+M;q
112 ]Z_

H(p LI) 2 2 ql‘]quj’ (1)

where J is Hermitian (J,j:J 1) and m; is the jth particle mass;
we will assume nearest-neighbor interactions later. The dy-
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namics (time evolution) we consider are given by the sto-

chastic differential equations, with j=1,... N,
oH :
dg;="—dr="Lar, 2)
wjm
oH 2
dp;=- 741 {ip;dt + vy ~dB;, (3)
J

where B; are independent Wiener processes, describing the
heat baths at j=1 and j=N, and schematically representing
the anharmonic degrees of freedom for the inner sites j
=2,...,N—1; {; is the stochastic reservoir coupling for the
jth site (we take {;={ for all j); and y;=2m;{;T;, where T; is
the (kinetic) temperature of the jth reservoir. We note that a
change of variables allows us to reduce the analysis of any
structure (i.e., with different distributions of the particle
masses and on-site potentials) to the investigation of the
model with m;=1 and M, =M [ (ie., constant for any site J).
Indeed we write (2) as \m =D,/ \mj, and define Q;
—\qu], P; pj/\m to get

Then we write (3) as
p; Ji+ M6y — Pi o
e = - S g - A 2T,
\m; Nmm, \m;

where 77j=dBj/dt. And so, we get

Pj=_ 10— P +\'2§jTj77j- (5)

Equation (5) describes, together with (4), the dynamics of a
particle system with masses m;=1. From DQ we extract the
on-site potential term MQ;; i.e., we write 2,D;0,=2/(Dj
-M&;)Q;+MQ;. Hence, without loss of generality, in what
follows we consider a system with unitary particle masses
and constant on-site potentials (as shown, a graded mass
model, for example, may be mapped on such a system).
As usual, we take the energy of the jth oscillator as

P2
H —L+_Q + EQ}DIJQ]
P’
=5+ UI(Q)+3 2 U5(Q;- 0)), (6)
l#]

where U, and U, come from (1) and X;H;=H [of course, in

(1) we make the replacements: pj—>P qj—>Qj, m;=1, M;
=M, J;;— Dy;]. Hence, it follows that
dH (1)
< P > RN F=Fp, D)

where (-) means the expectation with respect to the noise
distribution and

(Ri(1)) = UT; = (P)) (8)

gives the energy flow from the jth reservoir to the jth site.
Later, we will analyze the steady state in the self-consistent
condition, which means (R;)=0 for j=2,...,N-1. That is,
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the inner reservoirs do not inject energy into the system: as
said, we do not take them as real thermal reservoirs, but only
as a representation of the anharmonic degrees of freedom not
present in the potential. The other term in (7) gives the en-
ergy current inside the system:

P+ P
Fo=S VU Q- 0)—t 9)

b
I~ 2

where JF;_, describes the heat flow from the jth site to the /th
sites (/> /) and F_,; the flow from the previous sites to j (its
expression is given by changing [ with j in F,_). We still
remark that, if we write the energy current inside the system
in terms of the original variables ¢ and p from the Hamil-
tonian (1), we obtain the same expression of Eq. (9) above.

We are interested in the symmetry properties of the heat
flow in the steady state for a generic interaction (which also
englobes, as said via a change of variables, generic particle
mass distribution, etc.). To analyze the stationary state, we
follow our approach proposed in some previous works
[25,26]. For clearness, we repeat expressions already de-
scribed in these papers (of course some expressions change
accordingly to the problem).

In a few words, our strategy is to start from a simplified
system without the interparticle interactions. This initial dy-
namical system involves only isolated sites, and it has an
easy solution. Then we use a tool of stochastic differential
equations, the Girsanov theorem, which gives the solution of
the complete problem with the interparticle potential in terms
of the simplified problem. We present details ahead.

For convenience, let us introduce the phase-space vector
¢=(0Q,P), with 2N coordinates. Now the time evolution
equation becomes

p=-A¢p-U,-om, (10)

where Ué:DqS; A, o, and D are the 2N X 2N matrices given

by
0 -1 0 0 00
Az(MI a)’ 02:(0 2§T)’ D=<D 0)’
(11)

with the NX N matrices: I (the identity), 7;=&,T;, and D is
the interparticle potential; 7 are independent white noises.
The solution of the dynamical equation (10) is the Ornstein-
Uhlenbeck process

d(1) = e P(0) + f dse" "M an(s). (12)
0

For simplicity, we take as initial condition ¢(0)=0. Hence,
the covariance of this Gaussian process becomes

e AC(s,s), 1=,

Clt,)e 64" r<s,

(pD¢'(5)) = Clt,5) = (13)
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Ct,1) = f dse= A2 (14)
0

A useful expression, obtained by, e.g., diagonalizing A, is the
following

I
sinh(zp) (( g1 1 ) }
bt :

exp(—1A) =¥ 2{cosh(tp)( (I) 0 )

p \-MI -(g2)

where p=[(£/2)>—M]"2. Tt is also useful to note that C(z,s)
above may be written as, for 1=,

C(t,1) = exp[— (t — $)A]C + O(exp[— (t + 5)£/2]),

and the effects of the second term disappear in some compu-
tations ahead as t— . In short, in many computations ahead
we have that, in the expression for C(z,s), Eq. (13), the terms
C(s,s) and C(z,t) may be replaced by C, which makes the
analysis easier. For this case—i.e., without the interparticle
interaction—each (isolated) site is connected to one stochas-
tic reservoir, and so, each one converges to equilibrium as
t—. The final Gaussian stationary distribution, related to
Boltzmann-Gibbs states, has mean zero and covariance

” M'T o
C= f dseAole=A = ( 0 ’T)I (15)
0

Thus, for the computations in the next section, we write the
covariance of the Gaussian measure above (13) as

C]J(I,S) CJI(I,S)>
Cylts) Cylts) )’

where each one of the four N X N matrices Cggs above are
diagonal and their elements are

C(z,s) =< (16)

T.
Ci(t.s)= e"_slg/z{cosh(ph —-sP)+ 2_§p sinh(p|t — v|)} X/IL’
Jmslen L

Ci(t.s)=e — sinh[p(r - 5)]T;,
p
1

Cii(t,s) =— elslo2 = sinh[ p(t = )]T,
. o .

Cii(t,s) = 75182 cosh(p|t—s|)—2i sinh(p|t - s|) | T;.
p

Notice that C;(t,s) and C;(t,s) depend on (¢—s), and so they
change sign if t>s or t<<s. To obtain the solution for the
process ¢ with the interparticle potential U,, we use the Gir-
sanov theorem [27], which gives the solution of the new
process ¢ in terms of the previous one ¢. In particular, for
the two-point correlation function, which gives the heat flow,
this theorem states that (details in [25,26])
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<un(f1)(Pv(t2)> =N_1 f ¢u(tl)¢v(t2)z(t)d1u‘C’ (17)

where N is a normalization factor, du is the Gaussian mea-
sure with zero mean and covariance given by (13), and
t;,t,<t. The corrective factor Z(r) is related to the coupling
potential, and it is given by (we omit obvious sum in the
notation below and everywhere in this article)

Z(1) =eXp<ftudB— %ftuzds>, (18)
0 0

where y” 2u,==Dy. ;. In the expression above and in what
follows, we use the index notation: i for index values in the
set {N+1,...,2N}, j for values in {1,...,N}, and k in
{1,...,2N}. The first term above we write as

wdB; = v;""uyy*dB; = - 'Yi_lDijd’j(dQSi +Ayidt).
Using the 1td formula [27], we obtain

- ')’i_lDij(ﬁjd b= - %'_1 & DA jx Pt

F(¢)= ’)’i_]¢ipij¢j-

Hence, the expression for Z(f) becomes

Z(n= eXp(— F(¢(1) + F((0)) - f dsW(¢(S))>,
0

(19)

W((5)) = ¥ $i(5)DyjA jubils) + ()AL Y ' Dyji(s)

+ 5¢,»,(s>Dﬁiy;1Di,¢,(s>. (20)

The heat current in the steady state, lim,_m}'j_,(t), Eq.
(9), for U, quadratic, is given in terms of two-point correla-
tion functions such as

lim( 060 =N im [ 600,020, @1

forue{N+1,...,2N} and v e{l,... ,N}.

III. PERTURBATIVE COMPUTATION
FOR THE THERMAL CONDUCTIVITY

We will perform a detailed computation up to second or-
der in the coupling interaction D, and we will argue about
the structure of the remaining orders. From Egs. (19) and
(20), writing Z=exp(-V), we have (up to second order) the
truncated expansion

(00 =)~ (Db V) + S (Db ViV), (22

where
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t
V= ’}’,-_l¢i(l)Di_j¢,'(f) + J ds{ ’)’i_l¢i(S)DijA_jk¢k(S)
0

+ )ALV Dyi(s) + 5 ¢>, ()AL7; ' Dijeby(s)
EA1+A2+A3+A4. (23)

The term corresponding to F(¢(0)) in (19) is not considered
above, since it disappears in the computation as t— . Per-
forming the huge, but straightforward computations of the
Gaussian integrals (and taking the limit t— ), we obtain up
to order D?

Tu—N Tv

A oag2 J u-N~jv
4§M Tj

T_NT
T+2T +—,
TJ

<¢u¢v ’A4>

s

<¢u¢v ;Al ;A2> == Du—N,jD

8§3M Jsv

28
<¢u¢v ’Al ’A3> §3M —N,ij,v ﬁ +1 Tj

2
T, T,
+2<§—+1>Tv+& ,
M T;

J

T, T,
<¢M¢U;A2 3> D (Tj_TU+3TLl—N+%>’
J

8§3 u N,j~jv

1 1 1
5<¢M¢U§A3§A3> = Du—N,ij,v[_ (4§M2 + 8§3M>TJ

1 1 3
— T, —+——|T,_
T8eM <4gM2+8§3M> uN

( 1 1 ) T, NT,
- + .
aM? 8CM) T,

We also have (¢, d,;A;;A)=0=(p,d,;A,;A,). And so

}Ln;<¢zt(t)¢v(t)> = gu,v(Tu—N_ Tv)

Du,/Dl+N,v:| (Tu—N - Tv) .

(24)

[Du,v 1
oM aeM?

The sum over [/ above is assumed. For simplicity, we con-
sider nearest-neighbor interparticle interaction only. From
(9), the heat current F;_;,; i

D..
(Froppy==3gp1= ) (@n+ @) (25)

Using that in the steady state (dH /dty=0 and the self-
consistent condition lim,_..(R;(1))=0, which is given by
11mH°0<<pj(t)> T;, we obtain
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fl—>2:]:2—>3: :fN—l—>NE]:'

Hence, we get F=G\(T,-T,)="=Gn_(Ty_;—Ty), where
we use the notation G;=Dj,y ;;1G.n +1- And so it follows
that

F=«k(T,=Ty)/(N-1),
which is Fourier’s law with thermal conductivity «:
kN-D=G,"+6, + - +G6,, )L (26)
For gj we have

Djnjs B Djinjs1 Djanj+ Djstan et
2UM 4¢M? 2

gj = Dj+N,j+1
(27)

And so, from the expressions above, the symmetry in the
thermal conductivity is clear: nothing changes if the chain is
inverted (i.e., if we replace particle 1 by N, 2 by N-1,
etc.)—recall that D;,y ;,1=D; ;;, and D is Hermitian. Hence,
for our system with weak interparticle interaction D, or any
interaction J and heavy-particle masses (graded or not—see
details ahead), the effect of thermal rectification does not
exist or, at least, in the case of asymmetric upper order cor-
rections, it is very small: O(D%). This connection between a
system with heavy-particle masses and another with weak
interaction D and same particle masses is clear from the
expression before Eq. (5): note the relation D
=M~ 2J9M12, where 90t is the diagonal matrix for the
heavy (graded or not) particle masses.

Now we briefly comment on the possible symmetric con-
tribution of the upper terms in the perturbative series. From
the structure of the representation for the two-point correla-
tion, and so, for the heat flow—i.e., from (21) and remaining
terms in (22)—e.g., (&, ¢,:V;V;V), the next terms in the
perturbation expansion shall introduce expressions with
D, Dy Djsn,y» etc. [see (24)], corrections which do not
break the symmetry of the thermal conductivity «, as we
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shall see by following the derivation of «, Eq. (26).

IV. FINAL REMARKS

We first remark that our perturbative treatment is a rigor-
ous analysis: the convergence of the perturbative series for
any harmonic chain with self-consistent stochastic reservoirs
(and small interparticle potential D) is rigorously proved in
[24], which shows the trustworthiness of our computations.
Moreover, we recall that in Ref. [25], for the completely
homogeneous case (the system with same particle masses
and interparticle potentials), we show that our first-order per-
turbative result for the heat conductivity and the exact one
obtained in Ref. [9] (and valid even for large D) are the same
one, which indicates that the perturbative expansion shall be
valid for any value of D.

In this article, we investigate the thermal conductivity of
graded materials, represented by a schematically anharmonic
model (which obeys Fourier’s law) with inhomogeneous in-
terparticle interaction. In some previous numerical or experi-
mental works, as recalled in the Introduction, thermal recti-
fication is found for some quite specific anharmonic and
inhomogeneous models or materials, and it is claimed to be a
general phenomenon. Our analytical results show that a sig-
nificative thermal rectification is absent in the inhomoge-
neous self-consistent harmonic chain, an effective anhar-
monic model, proposed awhile ago and used by several other
researches. If we believe that such a model is indeed efficient
to describe some properties of the thermal conductivity of
realistic systems, then our results indicate that only anharmo-
nicity and inhomogeneity, such as structures with graded
masses, may not be sufficient to guarantee a significative
effect of thermal rectification: some other ingredient is nec-
essary.
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